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ABSTRACT

Wind tunnel investigations were conducted to probe the
wake of a C-141 aircraft in an airdrop con~figuration. A rake
with twelve 5-hole yaw head probes measured velocities at
various positions in the wake, and these measurements were
used to compute the vorticity of the wake. in addition,
motion pictures and force measurements were taken with three
differently-sized extraction parachute models attached to the
model aircraft by three extraction lines of different
lengths. Correlation of parachute behavior with the airflow
data indicates that the vortex shed by the inboard flaps and
the fuselage-wing junction causes an instability in the per-
formance of the smallest parachute models while the perform-
ance of the larger parachute models is relatively unaffected.

ADMINISTRATIVE INFORMATION~

The work reported was funded by the Army Natick Research and Development

Laboratories under Military Interdepartmental Purchase Requests 79-102 and 79-404

and David W. Taylor Naval Ship Research and Development Center (DTNSRDC) Work Unit

1660-282. Thle C-141B aircraft model was on loan to the project from the Air Force
through the Lockheed Georgia Company under Contract F09603-81-6-0443, Order Number

0002.

INTRODUCTION

Traditionally, the performance of a cargo extraction parachute in

combination with an aircraft is not known until the aircraft has been built

and flight tests of the cargo extraction system have been completed. A series

of investigations, sponsored and administered by the Army Natick Research and

Developmient Coammand, is being conducted for the purpose of reducing the cost and

length of time necessary to determine the capability of an aircraft to deploy cargo

in mid-flight. fThe goal of these investigations is to determine a method for

predicting the performance of cargo extraction parachutes in the wake of any given

aircraft. Aircraft wake information from wind tunnel surveys performed during the

design process can be used to determine whether the proposed aircraft has the

capability to airdrop cargo. When this judgment can be made in the early design

process, the costs of producing airdrop-capable cargo aircraft can be reduced

signif icantly.

During the initial Investigation in the series, an attempt is made to

correlate the measured performance of extraction parachute models with the wake



characteristics of an existing baseline aircraft model. This investigation was

performed in a conventionally sized, low Reynolds number, subsonic wind tunnel at

DTNSRDC.

The second investigation will determine the influence of wind tunnel wall

proximity on aircraft wake generation and will be performed in the NASA Langley 14-

by 2n-ft wind tunnel. During the third investigation, Reynolds number effect will

be examined with tests to be conducted in the NASA 12-ft pressure tunnel at the

NASA Ames Research Center. Final validation of these investigations will be the

actual flight testing of the parachutes.

In this investigation, performed in the DTNSRDC 8- by 10-ft north subsonic

wind tunnel, the performance of 15-, 22-, and 28-ft ringslot parachute models was

measured in the wake of a C-141B model aircraft. All models were 0.044 scale. To

determine the basic model performance, parachutes were attached to a force balance

located inside the model aircraft. Parachute forces were recorded and high-speed

motion pictures were taken of the parachute movements. Direction and velocity of

the wake flow were computed from the wake data, and an approximate computation of

the vorticity of the wake flow was made using the basic 
vorticity equation.l*

MODELS, EQUIPMENT, AND TEST TECHNIQUES

Eleven models were used during the investigation: a 0.044-scale C-141B model

aircraft (Figures 1 and 2),2 an ogive cylinder (Figure 3), and nine 0.044-scale

ringslot parachutes (Figure 4). The C-141B aircraft model, on loan from the

Lockheed Georgia Company, served strictly as a wake generator and was configured

for air drops with petal doors open and ramp door down. Four flap angle settings

of 0, 10, 20, and 30 deg simulated different cargo loadings. Compressed air was

ducted to the inboard engine nacelles to simulate jet engine effects that may

influence the aircraft wake in areas where the parachutes are located. Trip strips

were installed on the model to ensure proper Initiation of turbulent flow over the

aircraft surfaces.

Three models each of the 15-, 22-, and 2R-ft full-size ringslot cargo

extraction parachutes were constructed at the Amy Natick R&D Laboratories from

nylon cargo parachute material. The models of each size were divided into two

groups, by the width of the reinforcing tape between gores. T%# canopies of each

A complete listing of references is qiven on page 9.
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size were constructed with narrow reinforcment tapes, types A and B. The third

canopy, type C, used wider reinforcement tape to make a stiffer, sturdier model.

During the first phase of the investigation, performance of the model

parachutes was measured in relatively undisturbed flow. The six types of parachute

models were connected to the ogive cylinder with three different length extraction

lines. Tables 1 and 2 list the significant dimensions of the parachute and

suspension line models. Runs were made with dynamic pressures varying from 20 to

60 psf. The method for accurately determining the dynamic pressure is described in

Appendix A.

The ogive cylinder, which was constructed at DTNSRDC, acted as a balance

holder for two phases of the investigation. The cylinder was used first as a

streamlined body in an attempt to measure the parachute performance in a relatively

undisturbed free stream. The cylinder was then used as a mating sleeve so that the

balance could be mounted inside the C-141B model.

During the second phase of the investigation, a survey of the wake generated

by the C-141B model was taken in the areas where the parachutes were located. A

rake of twelve 5-hole flow angularity probes (Figure 5) mounted on the model

support system was used to determine velocities and flow directions in the wake.

The model support system enabled the rake to traverse 50 in. in the streamwise

X-direction and 24 in. in the vertical Z-direction while the tunnel dynamic

pressure was at 60 psf, which dramatically reduced the time necessary to complete

the survey. Pressure measurements at various spanwise Y-positions were achieved by

repositioning the entire model support system and by orienting the rake so that as

each data point was recorded the 12 probes took recordings at 1-in. increments over

an 11-in, span in the Y-direction. Three pairs of planes (X = constant) were

surveyed where the canopies would be located when the parachutes are attached to

the three different extraction lines. The planes of each pair were separated by

one inch, as each probe station was in the vertical and lateral directions. The

method used to reduce these wake rake data is presented in Appendix B.

During the final phase of the investigation, the model parachutes were

connected to the strain gauge balance in the C-141B model while motion pictures

were taken. Each parachute type was connected to all three extraction lines,

including two of the 28-ft models, simultaneously.

Usually, six-component balances are mounted on a sting support with the "live

end" facing into the free stream. The experimental body is then mounted over the

3



balance. Measuring the forces generated by the extraction parachute models

employed a different mounting method. The ogive cylinder served as a balance

holder positioning the balance to face "live end" downstream. The parachute

extraction lines, made of braided 50-lb test monofilament line, were attached to

the balance "live end." Measurements of axial force, side force, and vertical

force were possible; however, moments were not measureable because the extraction

line was flexible and the extraction-line, balance-connection joint was a hook

preventing any moment transfer from the parachute models. The angular deflections

of the parachutes from directly behind the balance were calculated

trigonometrically from the force data.

Figures 6 through 8 illustrate the arrangement of equipment and models during

the three phases of the investigation.

DISCUSSION OF RESULTS

Analysis of the films indicates that the 15-ft parachute models are unstable

in all cases studied. The different versions had no fixed, steady position in the

aircraft wake at any of the three extraction line lengths. The parachutes moved

laterally up to 5; scale feet. The 22- and 28-ft parachute models can be grouped

into one category except for the 28-ft C type. These models when subjected to the

wake either were not fully inflated or were pulsed (diameter varied at a constant

frequency), signifying that the models were either squidding or that some basic

instability existed in the parachute model. The 22- and 28-ft parachute models

were also steady except for instances where the canopies were partially

inflated. The canopies of the two 28-ft models never fully inflated at the same

time, except when the free-stream velocity was extremely low at the beginning

and end of each point. The failure of the parachute to inflate and the pulsing

phenomenon are unknown. It is possible that the models were not constructed to

operate at the free-stream velocity used in this investigation.

The Y-Z velocity plots (Figure 9) indicate in a physical sense the flow of air

in a particular X-plane. A vortex seems to be located from 2 to 3 in. outboard of

the wing-fuselage juncture. Between the vortex and the fuselage centerline, there

is a strong upwash and inboard flow. The strength of this flow increases as the

flap deflections increase. Similarly, outboard of the vortex location a

significant downwash region intensifies as the flap deflection increases. Despite
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the different flap settings, the general description of the flow remains the same.

As flap deflection increases the velocity vector magnitudes increase; consequently,

the flow patterns become more clearly defined. The X-velocity component plots

(Figure 10), in combination with the Y-Z velocity plots, give a view of the total

velocity at each point. Note that the vector scales of the plots are very

different. The X-velocity component scale is length (grid units) = (X-component

velocity in ft/sec - 100)/100; the Y-Z velocity component scale is length (grid

units) = 10 ft/sec/grid.

Vorticity plots of these regions are shown in Figures 11 and 12. The com-

ponents were computed using the expressions:

x AW AViix y AZ
.AU AW

z A AX

AX Ay

where x = x-component of vorticity

a= y-component of vorticity

Sz= z-component of vorticity

Iu = x-velocity component (streamwise)

AV = y-velocity component (spanwise)

AW = z-velocity component (vertical)

Ax = streamwise distance from the ramp door

Ay = spanwise distance from the ramp door

Az = vertical distance from the ramp door

J The plots (Figures 11 and 12) indicate areas of viscous interaction and their

relative intensities.1 The grid system of the plots in Figures 9 through 12 is laid out so that the

origin of the axis is at the center of the ramp door of the C-1418 model. The

point of origin of each vector corresponds to the position of the actual probe

related to the aircraft model in the wind tunnel. The value of the vector's

magnitude is given by the scale located in the heading of each plot.I5



Force data taken while the parachutes were attached to the ogive cylinder and

to the C-141B model further support the assertion that the parachute models were

not constructed to be tested at this free-stream velocity. A typical drag

coefficient for a ringslot parachute is 0.55 within a range of 0.45 to 0.65. 7The
drag coefficients, 0.10 to 0.46 (Figure 13), were consistently below this range.

Only the C-type parachutes approach this lower limit of the range.

CONCLUSIONS AND RECOMMENDATIONS

In analyzing the results of this investigation, several assumptions are made:

1. The aircraft wake generated is approximately symmnetric about the vertical

plane that encompasses the centerline of the aircraft.

2. Because the flow mapping was made without the parachutes in the flow, the

plots do not show the actual flow in which these parachutes are behaving, but show

a related flow.

3. The wake is steady over a timed average but changes on an instantaneous

4.The configuration of model parachutes attached to a model aircraft by a

flexible line has an inherent stability based on a continuous X-velocity compnent.

The translational motions of the 15-ft models may be explained by the

velocity patterns plotted by the rake data. The only obvious difference in the

15-ft parachute models and the larger parachute models is their size. The

difference in model behavior may be because the 15-ft models are small and do not

occupy the area where the wing-fuselage vortex pattern originates when directly

behind the fuselage in what would be considered a stable position. The 15-ft

parachutes follow the vortex pattern that is indicated by the vorticity plots and,

more distinctly, outlined by the velocity plots. The instantaneous changes in the

aircraft wake are significant enough to force the parachute model from a stable

position into the vortex flow where it moves outside its range of stability. The

larger parachute models also experience the same instantaneous wake changes;

however, their occupation of both wing-fuselage vortex centers and the restoring

forces that these models create are strong enough to prevent an unstable departure.

Although the wake mapping seems accurate and the high-speed films capture the

behavior of the parachute models, the scaling of the parachute models may not have

6



been accurate. Subsequent tests should be conducted to determine the type of

parachute model that would best simulate performance. originally, the models were

to be vacuum bag molded from fiberglass-reinforced plastic; however, the cost of

this process was prohibitive. The plots of the drag coefficients in Figure 13

indicate that most of the drag coefficients of the parachute models were below the

generally accepted range of 0.45 to 0.65. The plots indicate that the type-C

parachutes have higher drag coefficients than models with narrower reinforcement

tapes. Cloth parachute models should be refined to prevent squidding in all cases

and to raise the drag coefficients. The parachute performance resulting from this

investigation supports the conclusions of Weber and Garrard:~

"The stiffness of the parachute did not strongly
influence stability characteristics, and, in fact,
stiffer models appeared to perform more like full-
size parachutes than did more flexible models."

At. each configuration point during this investigation, 10 to 12 samples of

data were taken at 0.r;-sec intervals. Because the parachutes were in a highly

dynamic situation, a hiqher or continuous sampling rate could have recorded

information that would have provided more insight into parachute model performance.

Consideration should also be given to using a continuous data collection method for

the parachute force data.

7
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APPENDIX A

DETERMINATION OF DYNAMIC PRESSURE

Determining the accurate dynamic pressure (and hence speed) of the free-stream

flow in the north subsonic wind tunnel requires several correction factors.

Incompressible dynamic pressure is the difference between the total head pressure

and static pressure of the flow. This pressure was measured with a piezometer ring

during this investigation. The piezometer ring measures the difference in pressure

of the flow at two locations on the wind tunnel circuit. One of four static taps

was located on each wall in the settling chamber in the same plane perpendicular to

the tunnel X-axis. The velocity of the air in the settling chamber is very low,

providing the equivalent of total head pressure on a pitot static tube. The second

location of the static taps is in the contraction cone just ahead of the test

section.

Two factors are used to adjust the pressure differences measured by the

piezometer ring to provide an accurate value for the dynamic pressure at the model.

The blocking factor adjusts the dynamic pressure for the effects of the presence of

the model, support system, and any of the other gear in the test section that

decreases the area available for air to flow and thus increases the dynamic

pressure.

BF=- 1 + Model Area + Equipment Area

4 x Test Section Area

The correlation factor relates the measurement taken by the piezometer ring to

the dynamic pressure in the test section. This correction is necessary because the

piezometer ring does not measure the dynamic pressure gradient upstream of the test

section which has been correlated previously to the dynamic pressure of various

locations in the test section.

The equation relating dynamic pressure to the pressure measured by the

piezometer ring is:

Aq = p * BF * CF

where q = free-stream dynamic pressure, 1/2 V2

.p = pressure difference measured by piezometer ring

BF = blocking factor

CF = correlation factor

PORD1 P UAME-AM T Flum
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APPENDIX B

WAKE RAKE DATA REDUCTION
The wake mapping was performed with a rake of 12 pitot-static angularity probes.

These probes are essentially cylinders with pressure taps located in the

hemispherical tip that permit pressure differences over the tip to be measured.

The pressure difference measured by the central tap on the probe tip and ring of

static taps downstream on the cylinder is the dynamic pressure at the probe. The

equations which govern the data reduction and Figures B.1 through B.3 are included

to indicate the pressure tap arrangement of the probe and the sign conventions used

to reduce data.*

AP1,2 + a+ b AP3

p - p TT S S

"P3 2 2 P12)
q = PT - P S

I + A + B(e 2 + ay)

= vertical deflection angle, deg

a = horizontal deflection angle, deg

AP1, 2 = difference in pressure measured in taps 1 and 2 (P 1 -P 2) psf

SP3,4 = difference in pressure measured in taps 3 and 4 (P 3-P 4 ) psf

PT-PS = dynamic pressure (Ptotal-Pstatic) psf

a = constant to account for shift in reading at a = = 0

k = constant to account for shift in reading at a = = 0

b = coefficient correcting influence of pressure reading of horizontal

deflection taps

1 = coefficient correcting influence of pressure reading of vertical deflection

taps

*Work reported by M.L. Cook ("Wind Tunnel Freestream Flow Survey at the
Mounting Location of the X-Wing Model Rotor," D'NSRDC/TM-l6-Pn/n2, Jan 19R2).

1M3O h~ UJaJo'z iu
- 13
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c = coefficient converting pressure readings into degrees of vertical

deflection, deg

m = coefficient converting pressure readings into degrees of horizontal

deflection, deg

q = dynamic pressure or velocity parameter, psf

A = constant to correct for constant deficiency between actual q and measured q

B = coefficient to account for losses due to deflection angles

14



TABLE I - PARACHUTE CHARACTERISTICS

Parachute Diameter Suspension Line
Full Scale Model Scale Type Canopy Weight Average Length

ft in grams in

15 7.5 A 7.5 5.9

15 7.0 B 7.8 5.7

15 7.6 C 7.6 6.0

22 11.3 A 20.1 9.0

22 11.2 B 20.0 8.9

22* - C - -

28 14.7 A 23.7 12.7

28 15.0 B 23.7 12.7

28 14.1 C 22.5 12.5

*Destroyed during investigation.

TABLE 2 - EXTRACTION LINES

Extraction Line Length

Full Scale Model Scale
---------------- ----------------.........----- .......

ft in

60 31.7

90 47.5

120 63.4

15*1
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Figure 3 - Ogive (>'lindcr

Figure 4 -Parachute Models
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Figure 9 - Y-Z Velocity Component Plot of C-141B Wake: Varying
X Distance and Flap Angle Setting (V Tunnel 200 ft/sec,

Vector Magnitude 10 ft/sec/grid)
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Figure 9 (Continued)

10~

-- -------------- -_ .
--/ - - - 7,,

- - - -- - ----. 
. -- -

2 "

----------------- . .------------ -- - .-- : It• - _ ' .p ' ! [ I

22

" - -* ' H H -J--"

all= M 2 z 4o -4 -X 1 sm )

LU

Figre9b-- Poiini 6Ii. onteaT.o Rm or

C.37

L ._

-12. ----------

22 20 18 1 4 1 1

D10NC FRO FUELG CENTER...-'1
Figur 9b X oiin=5. n owsra rmRm or

162422Fla 18tin 11 20 deg42

27



Figure 9 (Continued)
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Figure 9 (Continued)
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Figure 10 - X Velocity Component Plot of C-141B Wake; Varying X Distance
and Flap Angle Setting (VTunnel - 200 f-t/sec, Vector Magnitude

100 ft/sec/grid + 100 ft/sec with Positive Downstream Direction to Left)12 -
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Figure 10 (Continued)
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Figure 11 - Y-Z Vorticity Component Plot of C-141B Wake; Varying X Distance
and Flap Angle Setting (V Tunnel= 200 ft/sec, Vector Magnitude

Y Component 100 ft/sec/grid, Z Component 150 ft/sec/grid)12
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12 Figure 11 (Continued)
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Figure 12 - X Vorticity Component Plot of C-141B Wake; Varying
X Distance and Flap Angle Setting (VTl = 200 ft/sec,

Vector Magnitude 100 ft/sec/grid)
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Flap Setting = 0 deg
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Figure 12 (Continued)
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Figure 12 (Continued)
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Figure 12 (Continued)12 -i T .- +
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Figure 12 (Continued)
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73



Figure 12 (Continued)
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Figure 12 (Continued)
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Figure 12h - X Position 38.7 in. Downstream from Ramp Door;

Flap Setting = 20 deg
75



Figure 12 (Continued)
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Figure 12i - X Position 57.3 in. Downstream from Ramp Door;
Flap Setting =20 deg
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Figure 12 (Continued)
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12 Figure 12 (Continued)
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Figure 12 (Continued)
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Figure 12 (Continued)
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Figure 13 -Effect of Extraction Line Length and Parachute Size on Drag
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Figure 13a -Phase 1, Ogive Cylinder, V =200 ft/sec
Tunnel
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Figure 13 (Continued)
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Figure 13b -Phase III, C-14lB Model, V =200 ft/sec, Flap Setting 0 deg
Tunnel
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Figure 13 (Continued)
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Figure 13c -Phase III, C-141B Model, V Tunl 200 ft/sec, Flap Setting =30 deg
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NOTE: STATIC ORIFICES (ORTHOGONAL TO VX) ARE NOT SHOWN.
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Figure B.2- Positive Directions of Upwash, Sidewash, and Velocity Components
as Measured by Pitot-Static Angularity Probe
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Figure B.3 -Orifice Locations on Head of Angularity Probe
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DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS. A FORMAL SERIES. CONTAIN INFORMATION OF PERMANENT TECH-
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
INARY, TEMPORARY. OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.

j THEY CARRY A DEPARTMENTAL ALPHIANUMERICAL IDENTIFICATION.
3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION

OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN-

TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE4BY-CASE
BASIS.
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